In vitro and in vivo evaluation of Δ⁹-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy.

نویسندگان

  • L Martín-Banderas
  • I Muñoz-Rubio
  • J Prados
  • J Álvarez-Fuentes
  • J M Calderón-Montaño
  • M López-Lázaro
  • J L Arias
  • M C Leiva
  • M A Holgado
  • M Fernández-Arévalo
چکیده

Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ(9)-tetrahidrocannabinol (Δ(9)-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈ 290 nm) increased upon coating with PEG, CS, and PEG-CS up to ≈ 590 nm, ≈ 745 nm, and ≈ 790 nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈ 95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ(9)-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ(9)-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications

The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...

متن کامل

Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications

The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...

متن کامل

Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect

In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) NPs with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cyto...

متن کامل

Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect

In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) NPs with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cyto...

متن کامل

Preparation, characterization and in vitro cytotoxicity evaluation of docetaxel nanoparticles against A549 cell line

Introduction: Docetaxel (DTX) is one of the most potent anticancer drugs in the taxane family. The commercial formulation of DTX for clinical use consists of high concentrations of tween80, which has been caused serious patient`s difficulties. Therefore, preparation of novel drug delivery system with ability of removing tween 80 and targeting on cancer tissue can lead more effective and also de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of pharmaceutics

دوره 487 1-2  شماره 

صفحات  -

تاریخ انتشار 2015